

EXLW

EXLW OCS DATASHEET

MODEL 5 12 DC In, 12 DC Out, 2 - 14/16-bit Analog In (mA/V/Tc/mV/RTD), 2 - 12-bit Analog Out

TECHNICAL SPECIFICATIONS

1.1 General Specifications

Required Power (Steady State)	420mA @ 12VDC 230mA @ 24VDC	
Required Power (Inrush)	25A for < 1ms @ 24VDC, DC switched	
Primary Power Range	10 - 30VDC	
Relative Humidity	5 to 95% non-condensing	
Typical Power Backlight 100%	6.816W @ 24VDC	
Power Backlight 50%	6.169W @ 24VDC	
Power Backlight OFF	5.472W @ 24VDC	
Clock Accuracy	+ / - 20 ppm maximum at 25°C (+/- 1 min/month)	
Real Time Clock	Battery Backed, Rechargeable Lithium	
Operating Air Temp	-10°C to +60°C	
Storage Temp	-20°C to +60°C	
Weight	1.59 lbs (721.2g)	
Altitude	Up to 2000m	
Rated Pollution Degree	Evaluated for Pollution Degree 2 Rating	
Certifications (UL/CE)	North America Europe	

1.3 Connectivity		
Serial Ports	1 RS-232 and 1 RS-485 on first Modular Jack (MJ1/2) 1 RS-232 or 1 RS-485 on second Modular Jack	
USB mini-B	USB 2.0 (480MHz) Programming & Data Access	
USB A (500mA max)	USB 2.0 (480MHz) for USB flash drives (2TB)	
CAN Port Isolated 1kV	Remote I/O, Peer-to-peer Comms, Cscape	
CAN Protocols	CsCAN, CANopen, DeviceNet, J1939	
Ethernet	10/100 Mb (Auto-MDX)	
Ethernet Protocols	TCP/IP, Modbus TCP, FTP, SMTP, EGD, ICMP, ASCII, Cscape, Ethernet IP	
Remote I/O	SmartRail, SmartStix, SmartBlock, SmartMod	
Removable Memory	microSD, SDHC, SDXC IN FAT32 format, support for 32GB max. Application Updates, Datalogging, and more	

1.4 User Interface	
Display Type	7" TFT Color
Resolution	800 x 480
Color	16-bit (65,536)
Screen Memory	17MB
User-Program. Screens	1023 max pages; 1023 objects per page
Backlight	LED - 50,000 hour life

1.5 High-Speed Inputs		
Number of Counters	4	
Maximum Frequency	1MHz Max	
Accumulator Size	32-bits each	
Modes Supported	Totalizer, quadrature, pulse measurement, frequency measurement, set-point controlled outputs	

1.6 High-Speed Outputs		
Modes Supported	Stepper, PWM	
Output Frequency	500kHz	

page 1 of 7

technical specifications continued on next page...

1.2 Control & Logic		
Control Language Support	Advanced Ladder Logic Full IEC 61131-3 Languages Tag-Based Editor	
Logic Program Size	2 MB, maximum	
Logic Scan Rate	0.04ms/kB	
Digital Inputs	2048	
Digital Outputs	2048	
Analog Inputs	512	
Analog Outputs	512	
Gen. Purpose Registers	50,000 (words) Retentive 16,384 (bits) Retentive 16,384 (bits) Non-retentive	

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

technical specifications continued...

1.7 Digital DC Inpu	ts		
Inputs per Module	12 Including 4 Configurable HSC Inputs		
Commons per Module		1	
Input Voltage Range	12VDC	/ 24VDC	
Absolute Max. Voltage	30VD	C Max.	
Input Impedance	10kΩ		
Input Current	Positive Logic	Negative Logic	
Upper Threshold Lower Threshold	0.8mA 0.3mA	-1.6mA -2.1mA	
Max. Upper Threshold	8VDC		
Min. Lower Threshold	3VDC		
OFF to ON Response	1ms		
ON to OFF Response	1ms		
High Speed Counter Max Freq*	1MHz		

*See I/O info below for detail regarding HSC and PWM

1.8 Digital DC Outputs

Outputs per Module	16 Including 2 Configurable PWM Outputs
Commons per Module	1
Output Type	Sourcing / $10k\Omega$ Pull-Down
Output Frequency	500kHz
Absolute Max. Voltage	28VDC Max.
Output Protection	Short Circuit
Max. Output Current/Point	0.5A
Max. Total Current	4A Continuous
Max. Output Supply Voltage	30VDC
Min. Output Supply Voltage	10VDC
Max. Voltage Drop at Rated Current	0.25VDC
Max. Inrush Current	650mA per Channel
Min. Load	None
OFF to ON Response	1ms
ON to OFF Response	1ms
Output Characteristics	Current Sourcing (Pos. Logic)
PWM Out	≈ 5kHz
Rise Time	50 - 115µs
Fall Time	8-20µs

1.9 Analog Inputs, High Resolution			
Number of Channels	2	Thermocouple:	Temperature Range:
Input Ranges (Selectable)	0-10VDC; 0-20mA; 4-20mA; 100mV PT100 (-200 to 800 °C); J, K, N, T, E, R, S, B Thermocouples	B/R/S E T	32°F to 2,912°F (0°C to 1,600°C) -328°F to 1,652°F (-200°C to 900°C) -400°F to 752°F (-240°C to 400°C) -346°F to 1,382°F (-210°C to 750°C)
	10VDC: -0.5V to +15V	, у к / N	-400°F to 2,498°F (-240°C to 1, 370°C)
Safe Input Voltage Range	20mA: -0.5V to +6V RTD / T/C: +/- 24VDC	Thermocouple Common Mode Range	+/- 10V
	10V, 20mA, 100mV: 14 Bits	Converter Type	Delta Sigma
Nominal Resolution Input Impedance (Clamped @ -0.5VDC to 12VDC)	RTD, Thermocouple: 16 Bits Current Mode: 100Ω, 35mA Max. Continuous Voltage Mode:	Max. Error at 25°C (*excluding zero)	*4-20mA +/- 0.10% of full scale *0-20mA +/- 0.10% of full scale *0-10VDC +/- 0.10% of full scale RTD (PT100) +/- 1.0 C° of full scale 0-100mV +/- 0.05% of full scale (*excluding zero)
	500kΩ, 25mA Max. Continuous 10V, 20mA,	Max. Thermocouple Error (After Warm up Time of One Hour)	+/-0.2% (+/-0.3% below -100°C) of full scale
%AI Full Scale	100mV: 32,000 counts full scale RTD / T/C: 20 Counts / °C	Conversion Speed, Both Channels Converted	10V, 20mA, 100mV: 30 Times/Second RTD Thermocouple: 7.5 Times/Second
Max. Over-Current	35mA	Conversion Time per Channel	10V, 20mA, 100mV: 16.7 ms RTD, Thermocouple: 66.7 ms
Open Thermocouple Detec Current	50nA	RTD Excitation Current	250μΑ

1.10 Analog Outputs			
Number of Channels	2	Minimum 10V Load	1kΩ
Output Ranges	0-10VDC , 0-20mA	Minimum Resistance Load	500Ω
Nominal Resolution	12 Bits	Analog Outputs; Output Points	2
Update Rate	Once per PLC scan	Required	
Max. Error at 25°C (Excluding Zero)	20mA 0.1% of full scale 0 - 10V 0.1% of full scale	Addt'l Error for Temp. Other Than 25°C	20mA 0.000143%/ °C 0 - 10V 0.000151%/ °C

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

2 CONTROLLER OVERVIEW

2.1 - Overview of EXLW

- 1. Touchscreen
- 2. USB 2.0 "A": Flash Drive
- 3. LAN Port
- 4. PWR: 10-30VDC In
- 5. CAN Port

- 6. MJ3: RS-232/485
- 7. Dip Switches
- 8. MJ1/MJ2: RJ45 Serial Port
- 9. microSD: Data Storage
- 10. USB mini "B": Programming

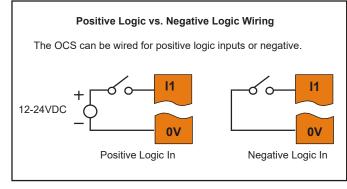
NOTE: See Precaution #12 on page 6 about USB and grounding.

2.2 - Power Wiring

Primary Power Port Pins		
PIN	SIGNAL	DESCRIPTION
1	Ground	Frame Ground
2	DC-	Input Power Supply Ground
3	DC+	Input Power Supply Voltage

DC Input / Frame Solid/Stranded Wire: 12-24 awg (2.5-0.2mm). Strip length: 0.28" (7mm). Torque, Terminal Hold-Down Screws: 4.5 - 7 in-Ibs (0.50 - 0.78 N-m).

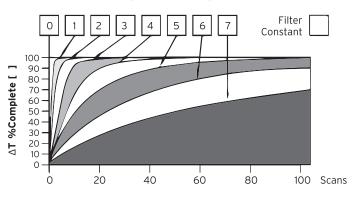
DC- is internally connected to I/O V-, but is isolated from CAN V-. A Class 2 power supply must be used.


POWER UP

 OPTION: Attach ferrite core with a minimum of two turns of the DC+ and DC- signals from the DC supply that is powering the controllers.
 Connect to earth ground.

3 WIRING: INPUTS AND OUTPUTS

3.1 - Digital Input & Output Information


Digital inputs may be wired in either a Positive Logic or Negative Logic fashion as shown. The setting in the Cscape Hardware Configuration for the Digital Inputs must match the wiring used in order for the correct input states to be registered. When used as a normal input and not for high speed functions, the state of the input is reflected in registers %I1 - %I12.

Digital inputs may alternately be specified for use with High Speed Counter functions, also found in the Hardware Configuration for Digital Inputs. Refer to the EXLW User Manual [MAN1256] for full details.

3.2 - Analog Input Information

Raw input values for channels 1-4 are found in the registers as Integer-type data with a range from 0 - 32000.

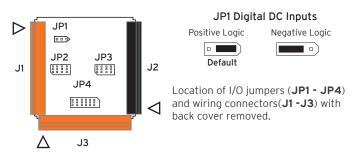
Analog inputs may be filtered digitally with the Filter Constant found in the Cscape Hardware Configuration for Analog Inputs. Valid filter values are 0 - 7 and act according to the following chart.

Data Values			
INPUT MODE: DATA FORMAT, 12-bit INT:			
0-20mA, 4-20mA	0-32000		
0-10V	0-32000		
T/C & RTD	Temperature in °C to 1 decimal place (xxx.y) NOTE: The value in the %AI is an integer. The value should be divided by 20 to get temperature in °C.		

3. Apply recommended power.

page 3 of 7

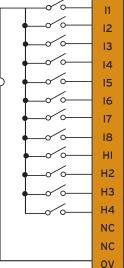
wiring: I-O continued on next page...

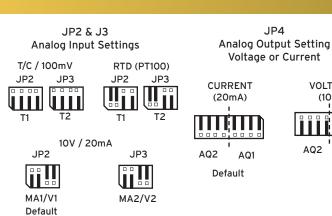

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

 \leq

wiring: I-O continued...

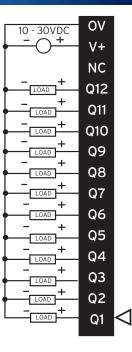
3.3 - Jumper Setting Details


Back Panel Torgue Rating for EXLW: 3.0 - 3.5 in-lbs (0.34 - 0.40 N-m)


3.4 - Wiring Connectors

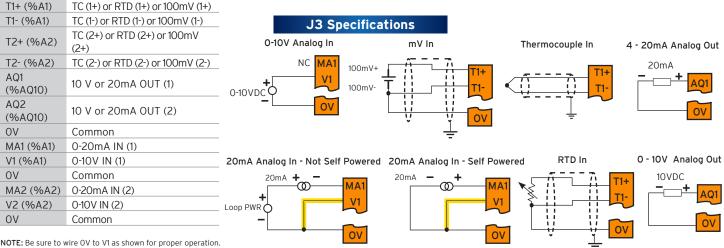
J3 (Orange) Name

Positive Logic - Digital Inputs - J1 Wiring


J1 (Orang	e) Name		
1 (% 1)	Digital In 1		
12 (%12)	Digital In 2		
13 (%13)	Digital In 3		•
14 (%14)	Digital In 4	12-24VDC	•
15 (%15)	Digital In 5	. –	
16 (%16)	Digital In 6		I
17 (%17)	Digital In 7		
18 (%18)	Digital In 8		•
H1 (%I9)	HSC1 / Dig. In 9		•
H2 (%l10)	HSC2 / Dig. In 10		
H3 (%l11)	HSC3 / Dig. In 11		
H4 (%l12)	HSC4 / Dig. In 12		•
NC	No Connect		
NC	No Connect		
OV	Common		

Positive Logic - Digital Outputs - J2 Wiring

J2 (Black)	Name
OV	Common
V+	V+
NC	No Connect
Q12 (%Q12)	Digital Out 12
Q11 (%Q11)	Digital Out 11
Q10 (%Q10)	Digital Out 10
Q9 (%Q9)	Digital Out 9
Q8 (%Q8)	Digital Out 8
Q7 (%Q7)	Digital Out 7
Q6 (%Q6)	Digital Out 6
Q5 (%Q5)	Digital Out 5
Q4 (%Q4)	Digital Out 4
Q3 (%Q3)	Digital Out 3
Q2 (%Q2)	Dig.Out2/PWM2
Q1 (%Q1)	Dig. Out 1 / PWM1



VOLTAGE

(10V)

AQ1

AQ2

NOTE: Loop power requirements are determined by the transmitter specification.

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

4 COMMUNICATIONS

4.1 - CAN Communications

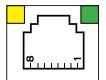
	CAN Pin Assignments		
V- CN L SHLD CN H V+	PIN	SIGNAL	DESCRIPTION
	1	V-	CAN Ground - Black
	2	CN L	CAN Data Low - Blue
	З	SHLD	Shield Ground - None
	4	CN H	CAN Data High - White
	5	V+ (NC)	No Connect - Red

Solid/Stranded Wire: 12-24 awg (2.5-0.2mm).

Strip Length: 0.28" (7mm).

Locking spring-clamp, two-terminators per conductor.

Torque, Terminal Hold-Down Screws: 4.5 - 7 in-lbs (0.50 - 0.78 N-m).


V+ pin is not internally connected, the SHLD pin is connected to Earth ground via a $1M\Omega$ resistor and 10 nF capacitor.

4.2 - Dip Switches

	DIP	SWITCHES	5	
	PIN	NAME	FUNCTION	DEFAULT
	1	MJ3 RS485 Termination	ON = Terminated	OFF
	2	MJ3 Duplex	ON = Half OFF = Full	OFF
	3			OFF
	4	MJ2 RS485 Termination	ON = Terminated	OFF

The DIP switches are used to provide a built-in termination to both the MJ1, MJ2 & MJ3 ports if needed. The termination for these ports should only be used if this device is located at either end of the multidrop/daisy-chained RS-485 network.

4.3 - Ethernet Communications

Green LED indicates link - when illuminated, data communication is available.

Yellow LED indicates activity - when flashing, data is in transmission.

4.4 - Serial Communications

MJ1/2 SERIAL PORTS

Two Serial Ports on One Module Jack (8posn)

MJ1: RS-232 w/Full Handshaking MJ2: RS-485 Half-Duplex

MJ1 PINS			MJ2	PINS
PIN	SIGNAL	DIRECTION	SIGNAL	DIRECTION
8	TXD	OUT		
7	RXD	IN		
6	OV	GROUND	OV	GROUND
5	+5V @ 60mA	OUT	+5V @ 60mA	OUT
4	RTS	OUT		
3	CTS	IN		
2			RX- / TX-	IN / OUT
1	-		RX+/TX+	IN / OUT

MJ3 SEI	RIAL PORT
2 Multiple	exed Serial

Ports on One Modular Jack (8posn)

MJ3 PINS			
PIN	SIGNAL	DIRECTION	
8	TXD RS232	OUT	
7	RXD RS232	IN	
6	OV	GROUND	
5	+5V @ 60mA	OUT	
4	TX- RS485	OUT	
3	TX+ RS485	OUT	
2	RX- RS485	IN	
1	RX+RS485-	IN	

Attach optional ferrite core with a minimum of two turns of serial cable. See website for more details. [Part #: HE-FBD001]

EXLW User Manual [MAN1256]


The User Manual includes extensive information on: Built-in I/O, Common %S & %SR Registers, HSC/PWM/Totalizer/Quadrature & Accumulator Registers. Wiring Details: Solid/Stranded Wire: 12-24 awg (2.5-0.2mm²). Strip Length: 0.28'' (7mm). Torque, Terminal Hold-Down Screws: 4.5 - 7 in-lbs (0.50 - 0.78 N-m).

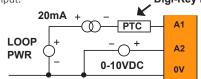
page 5 of 7

5 DIMENSIONS & INSTALLATION

5.1 - Dimensions

5.2 - Installation Procedure

- The EXLW utilizes a clip installation method to ensure a robust and watertight seal to the enclosure. Please follow the steps below for the proper installation and operation of the unit.
- This equipment is suitable for Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.
- Digital outputs shall be supplied from the same source as the operator control station.
- Jumpers on connector JP1 shall not be removed or replaced while the circuit is live unless the area is known to be free of ignitable concentrations of flammable gases or vapors.
- Carefully locate an appropriate place to mount the EXLW. Be sure 1. to leave enough room at the top of the unit for insertion and removal of the microSD[™] card.
- Carefully cut the host panel per the diagram, creating a 131.9mm 2 x 175.0mm, with a +1mm / -0mm panel cutout tolerance, opening into which the EXLW may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the unit. If the opening is too small, the OCS may not fit through the hole without damage.
- 3. Remove any burrs and or sharp edges and ensure the panel is not warped in the cutting process.
- Remove all Removable Terminals from the EXLW. Insert the EXLW 4. through the panel cutout (from the front). The gasket must be between the host panel and the EXLW.
- Install and tighten the four mounting clips (provided in the box) 5. until the gasket forms a tight seal
 - NOTE: Max torque is 0.8 to 1.13Nm, or 7 to 10 in-lbs.
- 6. Reinstall the EXLW I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required.


6 BUILT-IN I/O for Model 5

All EXLW models (except the Model O) feature built-in I/O. The I/O is mapped into OCS Register space, in three separate areas - digital/analog I/O, high-speed counter I/O, and high-speed output I/O. Digital/analog I/O location is fixed starting at 1, but the high-speed counter and high-speed output references may be mapped to any open register location. For more details, see the EXLW OCS User's Manual [MAN1256].

Digital and Analog I/O Functions			
Digital Inputs	%11-12		
Reserved	%113-31		
ESCP Alarm	%132		
Digital Outputs	%Q1-12		
Reserved	%Q13-24		
Analog Inputs	%Al1-2		
Reserved	%AI3-12		
Analog Outputs	%AQ9-10		
Reserved	%AQ1-8		

7 ANALOG IN TRANZORB FAILURE

A common cause of Analog Input Tranzorb Failure on Analog Inputs Model 2, 3, 4 & 5: If a 4-20mA circuit is initially wired with loop power, but without a load, the Analog input could see 24VDC. This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and analog input. Digi-Key BC2316-ND

page 6 of 7

8 SAFETY & WARNINGS

8.1 - WARNINGS

- To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.
- To reduce the risk of fire, electrical shock, or physical injury, it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.
- Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.
- In the event of repeated failure, do NOT replace the fuse again as repeated failure indicates a defective condition that will NOT clear by replacing the fuse.
- 5. Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.
- 6 WARNING Battery may explode if mistreated. Do not recharge, disassemble, or dispose of in fire.
- WARNING EXPLOSION HAZARD Batteries must only be changed in an area known to be non-hazardous.

8.2 - FCC COMPLIANCE

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference
- 2. This device must accept any interference received, including interference that may cause undesired operation

8.3 - PRECAUTIONS

All applicable codes and standards need to be followed in the installation of this product. Adhere to the following safety precautions whenever any type of connection is made to the module:

- Connect the safety (earth) ground on the power connector first before making any other connections.
- 2. When connecting to the electric circuits or pulse-initiating equipment, open their related breakers.
- 3. Do NOT make connection to live power lines.
- Make connections to the module first; then connect to the circuit to be monitored.
 Route power wires in a safe manner in accordance with good practice and local codes.
- Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
 Ensure hands, shoes, and floor are dry before making any connection to a power
- Ensure hands, shoes, and floor are dry before making any connection to a pov line.
 Make sure the unit is turned OFF before making connection to terminals
- Make sure the unit is turned OFF before making connection to terminals.
 Make sure all circuits are de-energized before making connections.
- Before each use, inspect all cables for breaks or cracks in the insulation. Replace
- immediately if defective. 11. Use copper conductors in Field Wiring only, 60/75°C.
- Use caption when connecting controllers to PCs via serial or USB. PCs, especially laptops may use "floating power supplies" that are ungrounded. This could cause a damaging voltage potential between the laptop and controller. Ensure the controller and laptop are grounded for maximum protection. Consider using a USB isolator due to voltage potential differences as a preventative measure.

9 BATTERY MAINTENANCE

The EXLW has an advanced battery system that uses a rechargeable lithium battery. The battery powers the real time clock when power is removed, and it is needed for register data retention. Please reference the EXLW User Manual [MAN1256] which provides instructions on how to replace the battery.

NOTE: For detailed rechargeable battery information, refer to the Battery Manual [MAN1142].

10 ACCESSORIES

10.1 Backup Battery: HE-BAT019

The EXLW uses a rechargeable 3.6V lithium battery to run the Real-Time Clock and to maintain the retained register values. This battery is designed to maintain the clock and memory for 7-10 years.

10.2 Programming Cables Kit: HE-XCK

- This programming cable kit includes the following adapter cables: • USB to MiniUSB
 - USB to RS-232 Serial
 - RS-232 Serial to RJ45 Ethernet

10.3 2/4 Channel Analog Output Kit

- HE-XDAC007 2 Channel Analog Output I/O Kit
 HE-XDAC107 4 Channel Analog Output I/O Kit

Visit the Horner Website to purchase accessories.

11 PART NUMBER

	North America	Europe
Model 5	HE-EXLWE5	HEXT381C115

12 TECHNICAL SUPPORT

For assistance and manual updates, contact Technical Support at the following locations:

Europe

North America

+1 (317) 916-4274 (877) 665-5666 <u>www.hornerautomation.com</u> techsppt@heapg.com

+353 (21) 4321-266 www.hornerautomation.eu technical.support@horner-apg.com