



Model no.

BR1K5W00

BR1K2W6P8

BR1K2W008

BR1K5W040

BR1K0W05

BR1K0W075

**3** Dimensions

**Braking Resistors** 

Specification

1500W 5.0 C

1200W 6.8

1200W 8.0 Ω

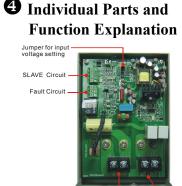
1500W 40 O

1000W 50 O

1000W 75 Q

- Braking Resistors

# VFDB Series Braking Modules Instruction Sheet


### **D** Preface

Thank you for choosing DELTA's braking module. VFDB braking units are applied to absorb the motor regeneration energy when the three-phase induction motor stops by deceleration. With VFDB braking unit, the regeneration energy will be dissipated in dedicated braking resistors. To prevent mechanical or human injury, please refer to this instruction sheet before wiring. VFDB braking units are suitable for DELTA AC Motor Drives VFD Series 230V/460V/575V. VFDB braking units need to be used in conjunction with BR series braking resistors to provide the optimum braking characteristics. VFDB braking units (2015, 2022, 4030, 4045 and 5055) are approved ction with BR series busing resistors to provide the optimini tracking characteristics. VFDB braking timits (2015, 2022, 405), 404 and 5033) are approve by Underwriters Laboratories, Inc. (UL) and Canadian Underwriters Laboratories (cUL). The content of this instruction sheet may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation.

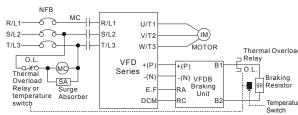
|                 | Specification                               | 230V Series                                                                |                                           | 460V Series                    |       | 575V Series |  |  |
|-----------------|---------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|--------------------------------|-------|-------------|--|--|
| Model VFDB-     |                                             | 2015                                                                       | 2022                                      | 4030                           | 4045  | 5055        |  |  |
| Max             | K. Motor Capacity (KW)                      | 15                                                                         | 22                                        | 30                             | 45    | 55          |  |  |
| tting           | Max. Discharge Current<br>(A) 10%ED         | 40                                                                         | 60                                        | 40                             | 60    | 60          |  |  |
| Output Rating   | Continuous Discharge<br>Current (A)         | 15                                                                         | 20                                        | 15                             | 18    | 20          |  |  |
| -               | Braking Start-up Voltage<br>(DC)            |                                                                            |                                           | 660/690/720/760/800/<br>830±6V |       | 950±8V      |  |  |
| Input<br>Rating | DC Voltage 200-400VI                        |                                                                            | 400VDC                                    | 400-800VDC                     |       | 607-1000VDC |  |  |
| Min. E          | quivalent Resistor for Each<br>Braking Unit | <b>10</b> Ω                                                                | <b>6.8</b> Ω                              | 20 Ω                           | 13.6Ω | 15.8Ω       |  |  |
| nc              | Heat Sink Overheat                          | Temperature over +95°C (203°F)                                             |                                           |                                |       |             |  |  |
| Protection      | Alarm Output                                | Relay contact 5A120VAC/28VDC (RA, RB, RC)                                  |                                           |                                |       |             |  |  |
| P               | Power Charge Display                        | Blackout until bus (+~-) voltage is below 50VDC                            |                                           |                                |       |             |  |  |
|                 | Installation Location                       | Indoor (no                                                                 | ndoor (no corrosive gases, metallic dust) |                                |       |             |  |  |
| ent             | Operating Temperature                       | -10°C~+5                                                                   | 0°C (14°F to                              | o 122°F)                       |       |             |  |  |
| Environment     | Storage Temperature                         | -20°C~+6                                                                   | 0°C (−4°F to                              |                                |       |             |  |  |
| Envi            | Humidity                                    | 90% Non-condensing                                                         |                                           |                                |       |             |  |  |
|                 | Vibration                                   | 9.8m/s <sup>2</sup> (1G) under 20Hz<br>2m/s <sup>2</sup> (0.2G) at 20~50Hz |                                           |                                |       |             |  |  |
| Me              | chanical Configuration                      | Wall-mounted enclosed type IP50                                            |                                           |                                |       |             |  |  |

# **3** Dimensions - VFDB Braking Units

<u>Ann</u> <u>R</u> 



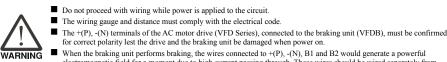
# $\oplus \oplus \oplus \oplus$


Terminal Wire Gauge

| Circuit             | Terminal Mark |        | erminal Mark Wire Gauge AWG (mm <sup>2</sup> ) |      | Torque                  |  |
|---------------------|---------------|--------|------------------------------------------------|------|-------------------------|--|
| Power Input Circuit | +(P), -(N)    |        | 10~12AWG (3.5~5.5mm <sup>2</sup> )             | M4   | 18 kgf-cm (15.6 in-lbf) |  |
| Braking Resistor    | B1, B2        |        | 10~12AWG (3.5~5.5mm <sup>2</sup> )             | M4   | 18 kgf-cm (15.6 in-lbf) |  |
| SLAVE Circuit       | Output        | M1, M2 | 20~18AWG (0.25~0.75mm <sup>2</sup> )           | M2   | 4 kgf-cm (3 in-lbf)     |  |
| SLAVE CIICUII       | Input         | S1, S2 | (with shielded wires)                          | 1912 | 4 kgi-cili (3 lil-101)  |  |
| Fault Circuit       | RA,           | RB, RC | 20~18AWG (0.25~0.75mm <sup>2</sup> )           | M2   | 4 kgf-cm (3 in-lbf)     |  |

# **5** Basic Wiring Diagram

Operation Explanation: 1. For safety consideration, install an overload relay between the braking unit and the braking resistor. In


- conjunction with the magnetic contactor (MC) prior to the drive, it can perform complete protection against abnormality.
  The purpose of installing the thermal overload relay is to protect the braking resistor from damage due to frequent braking, or due to braking unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent
- damaging the braking resistor. 3. Please refer to the specification of the thermal overload relay.
- 4. The alarm output terminals (RC, RA, RB) of the braking unit will be activated when the temperature of the heat sink exceeds 95°C. It means that the temperature of the installation environment may exceed 50°C, or the braking %ED may exceed 10%ED. With this kind of alarm, please install a fan to force air-cooling or reduce the environment temperature. If the condition not due to the temperature the control circuit or the temperature sensor may have been damaged. At this time, please send the braking unit back to the manufacturer or agency for repair.



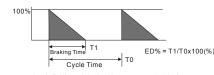
Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive user manual for the wiring of terminal +(P) of Braking unit. Note2: Do NOT wire terminal -(N) to the neutral point of power system

6. Besides using thermal overload relay to be the protection system and braking resistor, temperature switch can be installed on braking resistor side as the protection. The temperature switch must comply with the braking resistor specification or contact your dealer.

# **6** Wiring Notice



When the braking unit performs braking, the wires connected to +(P), -(N), B1 and B2 would generate a powerful electromagnetic field for a moment due to high current passing through. These wires should be wired separately fror other low voltage control circuits lest they make interference or mis-operation. ■ Inflammable solids, gases or liquids must be avoided at the


forced air-cooling.

| Wiri | ng distance    |          |              |                    |        |
|------|----------------|----------|--------------|--------------------|--------|
|      | VFD series     | 1        | VFDB         |                    |        |
|      | VFD series     |          | 2015         |                    |        |
|      |                |          | 2022         |                    |        |
|      | 15~55kW        | <b>↓</b> | 4030         | <del>، ، ، ،</del> | BR     |
|      | 230/460/       | Max 10M  | 4045         | Max 5M             |        |
|      | 575V           |          | 5055         |                    |        |
|      | AC Motor Drive | e        | Braking Unit | Brakin             | g Resi |

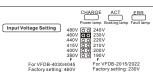
Resiste To prevent personal injury, do not connect/disconnect wires or

The prevent personal injury, do not connect watsomer with some on Do not touch the terminals of related wiring and any component on PCB lest users be damaged by extreme dangerous DC high voltage.

## **Definition for Braking Usage ED%**



Explanation: The definition of the barking usage ED(%) is for assurance of enough time for the braking unit and braking resistor to dissipate away heat generated by braking. When the braking resistor heats up, the resistance would increase with temperature, and braking torque would decrease accordingly.


# **8** The Voltage Settings

Regulation of power voltage: the power source of the braking unit is DC voltage from +(P), -(N) terminals of the AC motor drive. It is very important to set the power voltage of the braking unit based on the input power of the AC motor drive before operation. The setting has a great influence on the potential of the operation voltage for the braking unit. Please refer to the table below. PN DC Voltage

| Table 1: | The Select | ion of Power | Voltage and | Operation | Potential o | f P |
|----------|------------|--------------|-------------|-----------|-------------|-----|
|          |            |              |             |           |             |     |
|          |            |              |             |           |             |     |

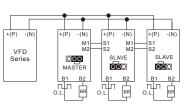
|   | 230V Model<br>AC Power<br>Voltage | Braking Start-up voltage<br>DC Bus (+(P), -(N)) Voltage | 460V Model<br>AC Power<br>Voltage | Braking Start-up voltage<br>DC Bus (+(P), -(N)) Voltage | 575V Model<br>AC Power<br>Voltage | Braking Start-up voltage<br>DC Bus (+(P), -(N)) Voltage |
|---|-----------------------------------|---------------------------------------------------------|-----------------------------------|---------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
| - | 190Vac                            | 330Vdc                                                  | 380Vac                            | 660Vdc                                                  | 575Vac                            | 950Vdc                                                  |
|   | 200Vac                            | 345Vdc                                                  | 400Vac                            | 690Vdc                                                  | -                                 | -                                                       |
|   | 210Vac                            | 360Vdc                                                  | 415Vac                            | 720Vdc                                                  | -                                 | -                                                       |
|   | 220Vac                            | 380Vdc                                                  | 440Vac                            | 760Vdc                                                  | -                                 | -                                                       |
|   | 230Vac                            | 400Vdc                                                  | 460Vac                            | 800Vdc                                                  | -                                 | -                                                       |
|   | 240Vac                            | 415Vdc                                                  | 480Vac                            | 830Vdc                                                  | -                                 | -                                                       |
|   |                                   |                                                         |                                   |                                                         | NOTE: Input P                     | ower With Tolerance ±10%                                |

### Input voltage setting for VFDB-2015/2022/4030/4045



For VFDB-5055 Series Factory setting: 575V 2. MASTER/SLAVE setting: The MASTER/SLAVE jumper is set "MASTER" as factory setting. The "SLAVE" setting is applied to two

1 S2 S1


R

8

R

or more braking units in parallel, making these braking units be enabled/disabled synchronously. Then the power dissipat will be equivalent so that they can perform the braking function completely. ion of each unit The position of the jumper

The SLAVE braking application of three braking units is shown as the above diagram. After wiring, the jumper of first unit shall be set as "MASTER" and that of others must be set as "SLAVE" to complete the system installation



5. The AC Motor Drive and braking unit will be electrified at the same tim while turning on the NFB (No-fuse breaker). For the operation/stop method of the motor, please refer to the user manual of the AC Motor Drives VFD Series. The braking unit will detect the inner DC voltage of the AC motor drive when it stops the motor by deceleration. The extra regeneration will be dissipated away rapidly by the braking resistor in the form of heat. It can ensure the stable deceleration

characteristic

location where the braking resistor is installed. The braking resistor had better be installed in individual metallic box with

Connect the ground terminal to the Earth Ground. The ground

lead must be at least the same gauge wire as leads +(P), -(N).
 Please install the braking resistor with forced air-cooling or

to other place.

Before regulating the power voltage, make

For DELTA's AC motor drive VED Series.

sure the power has been turned off. Please set

power voltage as the possible highest voltage

for unstable power system. Take 380VAC power system for example. If the voltage may

be up to 410Vac, 415VAC should be regulated

please set parameter (Over Voltage Stall Prevention) as "close" to disable over-voltage

stall prevention, to ensure stable deceleration

characteristic. For VFDB-5055, the jumper can only be put on the position as shown in the

following figure. Do NOT remove the jumper

ACT

ACT

----- 480V O O 2 575V 460V O O 2

Power lamp Braking lamp Fault lamp

440V 00 220V 415V 00 210V 400V 00 200V 380V 00 190V

M1: SLAVE output signal

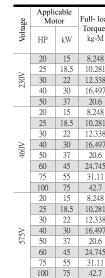
M2: SLAVE output signal + S1: SLAVE input signal +

S2: SLAVE input signal

NOTE: Please use shield while wiring.

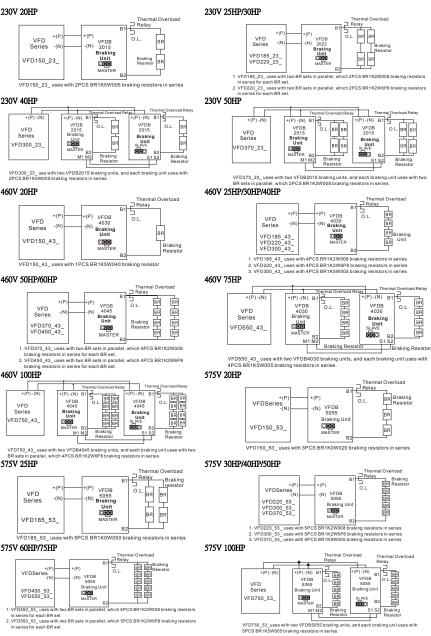
ERR

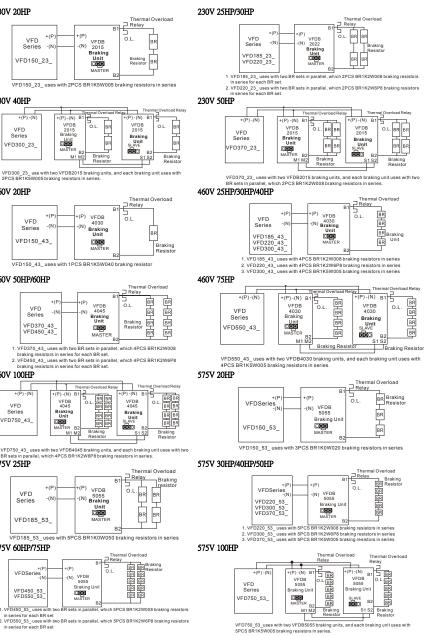
HARGE

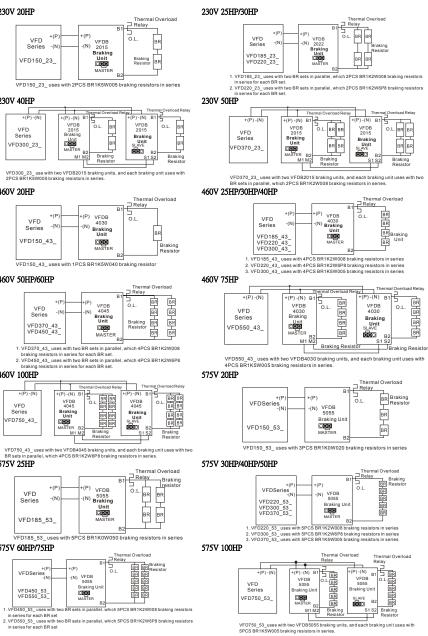

CHARGE

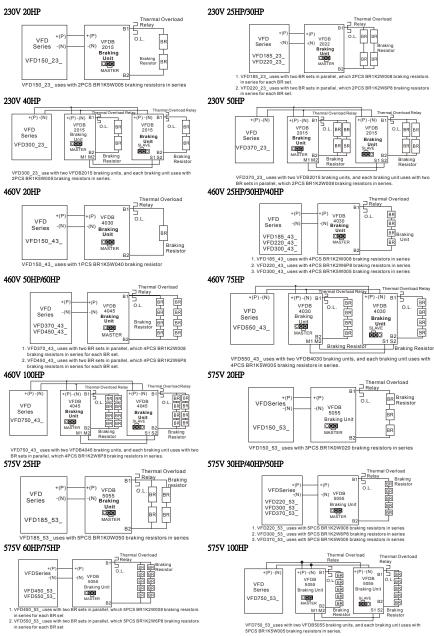
SLAVE 000

MASTER/SLAVE Setting Jumper


inals are fastened before power on

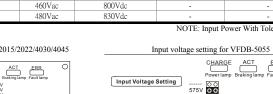

the equivalent when frequent deceleration braking is performed (over 10%ED).


















| oad<br>ie<br>1 | Resistor Value<br>Spec for Each<br>AC Motor Drive | Braking<br>Model V<br>No. of U<br>Used | FDB<br>Inits | Braking Resistors<br>Model and No. of Units<br>Used |    | Braking<br>Torque<br>10%ED | Min.<br>Equivalent<br>Resistor Value<br>for Each AC<br>Motor Drive | Typical<br>Thermal<br>Overload<br>Relay Value |
|----------------|---------------------------------------------------|----------------------------------------|--------------|-----------------------------------------------------|----|----------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| 8              | 3000W 10 Ω                                        | 2015                                   | 1            | BR1K5W005                                           | 2  | 125                        | 10Ω                                                                | 30                                            |
| 31             | 4800W 8Ω                                          | 2022                                   | 1            | BR1K2W008                                           | 4  | 125                        | 8Ω                                                                 | 35                                            |
| 38             | 4800W 6.8Ω                                        | 2022                                   | 1            | BR1K2W6P8                                           | 4  | 125                        | 6.8 Ω                                                              | 40                                            |
| )7             | 6000W 5Ω                                          | 2015                                   | 2            | BR1K5W005                                           | 4  | 125                        | 5Ω                                                                 | 30                                            |
| 5              | 9600W 4 Ω                                         | 2015                                   | 2            | BR1K2W008                                           | 8  | 125                        | 4Ω                                                                 | 30                                            |
| 8              | 1500W 40Ω                                         | 4030                                   | 1            | BR1K5W040                                           | 1  | 125                        | 40 Ω                                                               | 15                                            |
| 31             | 4800W 32Ω                                         | 4030                                   | 1            | BR1K2W008                                           | 4  | 125                        | 32 \OM2                                                            | 15                                            |
| 38             | 4800W 27.2Ω                                       | 4030                                   | 1            | BR1K2W6P8                                           | 4  | 125                        | 27.2 Ω                                                             | 20                                            |
| )7             | 6000W 20 Ω                                        | 4030                                   | 1            | BR1K5W005                                           | 4  | 125                        | 20 Ω                                                               | 30                                            |
| 5              | 9600W 16Ω                                         | 4045                                   | 1            | BR1K2W008                                           | 8  | 125                        | 16Ω                                                                | 40                                            |
| 5              | 9600W 13.6 Ω                                      | 4045                                   | 1            | BR1K2W6P8                                           | 8  | 125                        | 13.6Ω                                                              | 50                                            |
| 1              | 12000W 10Ω                                        | 4030                                   | 2            | BR1K5W005                                           | 8  | 125                        | 10 Ω                                                               | 30                                            |
| 1              | 19200W 6.8 Ω                                      | 4045                                   | 2            | BR1K2W6P8                                           | 16 | 125                        | 6.8 Ω                                                              | 50                                            |
| 8              | 3000W 60 Ω                                        | 5055                                   | 1            | BR1K0W020                                           | 3  | 125                        | 60 Ω                                                               | 15                                            |
| 31             | 4000W 50 Ω                                        | 5055                                   | 1            | BR1K0W050                                           | 4  | 125                        | 50Ω                                                                | 15                                            |
| 8              | 6000W 40 Ω                                        | 5055                                   | 1            | BR1K2W008                                           | 5  | 125                        | 40 Ω                                                               | 20                                            |
| )7             | 6000W 34Ω                                         | 5055                                   | 1            | BR1K2W6P8                                           | 5  | 125                        | 34 Ω                                                               | 25                                            |
| 5              | 7500W 25Ω                                         | 5055                                   | 1            | BR1K5W005                                           | 5  | 125                        | 25 Ω                                                               | 30                                            |
| 15             | 12000W 20Ω                                        | 5055                                   | 1            | BR1K2W008                                           | 10 | 125                        | 20Ω                                                                | 35                                            |
| 1              | 12000W 17Ω                                        | 5055                                   | 1            | BR1K2W6P8                                           | 10 | 125                        | 17Ω                                                                | 45                                            |
| 1              | 15000W 12.5 Ω                                     | 5055                                   | 2            | BR1K5W005                                           | 10 | 125                        | 12.5 Ω                                                             | 45                                            |

**9** All Braking Resistors & Braking Units Use in the AC Drives

### **Wiring Examples of Braking Resistors**

NOTE: Before wiring, please notice equivalent resistors value shown in the column "Equivalent resistors specification for each braking unit" in the above table to prevent damage.